Nouvelles

Résumé du Cours : Moteur asynchrone triphasé

                                           :Moteur asynchrone triphasé*  





: Généralités*

 Le moteur asynchrone triphasé est largement utilisé dans l'industrie, sa simplicité de construction en fait un matériel très fiable et qui demande peu d'entretien. Il est constitué d'une partie fixe, le stator qui comporte le bobinage, et d'une partie rotative, le rotor qui est bobiné en cage d'écureuil. Les circuits magnétiques du rotor et du stator sont constitués d'un empilage de fines tôles métalliques pour éviter la circulation de courants de Foucault

: Principe de fonctionnement*

 Le principe des moteurs à courants alternatifs réside dans l’utilisation d’un champ magnétique tournant produit par des tensions alternatives La circulation d'un courant dans une bobine crée un champ magnétique B. Ce champ est dans l'axe de la bobine, sa direction et son intensité sont fonction du courant I. C'est une grandeur vectorielle. Si le courant est alternatif, le champ magnétique varie en sens et en direction à la même fréquence que le courant. Si deux bobines sont placées à proximité l'une de l'autre, le champ magnétique résultant est la somme vectorielle des deux autres. Dans le cas du moteur triphasé, les trois bobines sont disposées dans le stator à 120° les unes des autres, trois champs magnétiques sont ainsi créés Compte-tenu de la nature du courant sur le réseau triphasé, les trois champs sont déphasés (chacun à son tour passe par un maximum). Le champ magnétique résultant tourne à la même fréquence que le courant soit 50 tr/s = 50Tr/s = 3000 tr/mn. Les 3 enroulements statoriques créent donc un champ magnétique tournant, sa fréquence de rotation est nommée fréquence de synchronisme. Si on place une boussole au centre, elle va tourner à cette vitesse de synchronisme. Le rotor est constitué de barres d'aluminium noyées dans un circuit magnétique. Ces barres sont reliées à leur extrémité par deux anneaux conducteurs et constituent une "cage d'écureuil". Cette cage est en fait un bobinage à grosse section et très faible résistance. Cette cage est balayée par le champ magnétique tournant. Les conducteurs sont alors traversés par des courants de Foucault induits. Des courants circulent dans les anneaux formés par la cage, les forces de Laplace qui en résultent exercent un couple sur le rotor. D'après la loi de Lenz les courants induits s'opposent par leurs effets à la cause qui leur a donné naissance. Le rotor tourne alors dans le même sens que le champ mais avec une vitesse légèrement inférieure à la vitesse de synchronisme de ce dernier. Le rotor ne peut pas tourner à la même vitesse que le champ magnétique, sinon la cage ne serait plus balayée par le champ tournant et il y aurait disparition des courants induits et donc des forces de Laplace et du couple moteur. Les deux fréquences de rotation ne peuvent donc pas être synchrones d'où le nom de moteur asynchrone. Prenons l'exemple d'un moteur dont la fréquence de rotation nominale relevée sur la place signalétique est de 2840 tr/mn, ce moteur étant alimenté en courant de 50Hz, la fréquence de rotation du champ magnétique est donc de 50 tr/s soit 3000 Tr/mn. Le rotor est donc balayé par un champ magnétique qui tourne à un fréquence de rotation relative de 3000-2840=160 tr/mn


: Branchement étoile ou triangle*

 Il y a deux possibilités de branchement du moteur au réseau électrique triphasé. Le montage en étoile et le montage en triangle. Avec un branchement en étoile, la tension aux bornes de chacune des bobines est d'environ 230V. Dans le montage en triangle, chacune des bobines est alimentée avec la tension nominale du réseau (400V). On utilise le montage étoile si un moteur de 230V doit être relié sur un réseau 400V ou pour démarrer un moteur à puissance réduite dans le cas d'une charge avec une forte inertie mécanique

:Plaques signalétiques*




: Puissance et rendement *


  : Résume*


Aucun commentaire